Received 19 August 2006 Accepted 23 August 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Kenji Michiue,^a Ian M. Steele^b and Richard F. Jordan^a*

^aDepartment of Chemistry, The University of Chicago, 5735 S. Ellis Ave., Chicago, Illinois, USA, and ^bDepartment of the Geophysical Sciences, The University of Chicago, 5734 S. Ellis Ave., Chicago, Illinois, USA

Correspondence e-mail: rfjordan@uchicago.edu

Key indicators

Single-crystal synchrotron study T = 100 KMean σ (C–C) = 0.005 Å R factor = 0.052 wR factor = 0.130 Data-to-parameter ratio = 14.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[Bis(3-mesitylpyrazol-1-yl)(5-mesitylpyrazol-1-yl)borohydrido]dichloro(5-mesitylpyrazole)titanium(III) toluene solvate

In the title Ti^{III} complex, $[Ti(C_{36}H_{40}BN_6)Cl_2(C_{12}H_{14}N_2)]$ - C_7H_8 , the Ti atom is coordinated in a distorted octahedral geometry by three N atoms that are constrained to a facial arrangement by the Tp^{Ms*} ligand $[Tp^{Ms*} = HB(3\text{-mesityl-pyrazolyl})_2(5\text{-mesitylpyrazolyl})]$, by two mutually *cis* chloride ligands and by an N atom from a 5-mesitylpyrazole ligand.

Comment

Group 4 metal d^{0} trispyrazolylborate complexes of general formula Tp' $M^{IV}Cl_3$ (Tp' = sterically bulky trispyrazolylborate ligand; M = Ti, Zr or Hf) are activated by methylalumoxane (MAO) to generate highly active catalysts for ethylene polymerization and ethylene/hexene copolymerization (Gil *et al.* 2001, 2004; Gil & Casagrande 2004; Lee & Jordan 2005; Michiue & Jordan, 2004; Murtuza *et al.* 2002; Pires *et al.*, 2006). Interestingly, the olefin polymerization characteristics of the d^{1} Ti^{III} complex K[Tp^{Ms*}TiCl_3] are distinctly different from those of the analogous d^{0} Ti^{IV} complex Tp^{Ms*}TiCl_3, and these differences were exploited in the synthesis of end-capped polyethylenes (Michiue & Jordan, 2003). As part of a general investigation of Tp^{Ms*}Ti^{III} catalysts aimed at understanding the influence of the metal oxidation state on polymerization properties, we report the structure of the Ti^{III} complex Tp^{Ms*}TiCl₂(pz^{Ms}H)-toluene (pz^{Ms}H = 5-mesitylpyrazole), (I).

The molecular structure of (I) is shown in Fig. 1, and selected bond distances and angles are presented in Table 1. The pz^{Ms}H ligand is located *cis* to the 5-mesitylpyrazolyl unit of the Tp^{Ms*} ligand, which minimizes steric crowding between these ligands. The N–Ti–N angles formed by the tridentate Tp^{Ms*} ligand are acute [range 81.59 (9)–85.62 (8)°]. The N2–Ti1–N6 angle [81.59 (9)°] is smaller than the N2–Ti1–N4 [85.37 (10)°] and N4–Ti1–N6 [85.62 (8)°] angles due to steric

© 2006 International Union of Crystallography All rights reserved

metal-organic papers

pressure from the pz^{Ms}H ligand. The Ti1-N7 distance involving the $pz^{Ms}H$ ligand [2.152 (2) Å] is shorter than the Ti-N distances involving the Tp^{Ms*} ligand [range 2.183 (3)-2.218 (2) Å]. The Ti-Cl distances in (I) [2.3153 (12) and 2.3523 (13) Å] are longer than those in the sterically similar Ti^{IV} complex Tp^{Ms*}TiCl₃ [range 2.1958 (12)–2.2561 (12) Å], as expected due to the difference in the Ti oxidation state (Michiue & Jordan, 2003). The structure of (I) is very similar to that of the analogous but less crowded $\mathrm{Ti}^{\mathrm{III}}$ complex $Tp*TiCl_2(pz^{Me2}H)$ ($Tp* = HB(3,5-Me_2-pyrazolyl)_3$, $pz^{Me2}H =$ 3,5-Me₂-pyrazole) (Hughes *et al.*, 1988). The Ti-N distances are ca 0.02 Å longer and the Ti-Cl distances ca 0.03 Å shorter in (I) compared to the corresponding distances in $Tp*TiCl_2(pz^{Me2}H)$, due to the steric crowding associated with the bulky mesitylpyrazolyl units in (I). Comparison of the structures of (I) and K[Tp^{Ms*}TiCl₃] is complicated by ionpairing in the latter species.

Experimental

A mixture of $Tp^{Ms^*}TiCl_3$ (1.00 g, 1.39 mmol) and K[O'Bu] (0.155 g, 1.39 mmol) in toluene (70 ml) was stirred at 293 K for 12 h. The volatiles were removed under vacuum to give a dark-green solid. The solid was taken up in hexanes (100 ml) and filtered to give a pale blue powder (414 mg, identified as K[$Tp^{Ms^*}TiCl_3$]) and a dark yellow filtrate. The filtrate was taken to dryness under vacuum to give an ivory powder. The powder was dissolved in toluene (5 ml) and the resulting dark-green solution was layered with hexanes and stored at 236 K. Needle-like crystals of (I) slowly formed (yield 268 mg, 22.2% based on Ti).

Crystal data

[Ti(C ₃₆ H ₄₀ BN ₆)Cl ₂ (C ₁₂ H ₁₄ N ₂)]	Z = 4
C_7H_8	$D_x = 1.217 \text{ Mg m}^{-3}$
$M_r = 964.74$	Synchrotron radiation
Monoclinic, $P2_1/c$	$\lambda = 0.5500 \text{ Å}$
a = 13.137 (7) Å	$\mu = 0.17 \text{ mm}^{-1}$
b = 17.277 (10) Å	T = 100 (2) K
c = 24.824 (11) Å	Rod, colourless
$\beta = 110.82 \ (3)^{\circ}$	$0.10 \times 0.02 \times 0.02 \text{ mm}$
$V = 5266 (5) \text{ Å}^3$	

Data collection

```
Huber diffractometer \varphi scans
Absorption correction: multi-scan
```

```
(SADABS; Bruker, 2002)
T_{min} = 0.984, T_{max} = 0.997
```

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.052$ $wR(F^2) = 0.130$ S = 0.979087 reflections 621 parameters 50912 measured reflections 9087 independent reflections 6036 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.159$ $\theta_{\text{max}} = 19.1^{\circ}$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0684P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.52 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.47 \text{ e } \text{Å}^{-3}$

 Table 1

 Selected geometric parameters (Å, °).

Ti1-N2	2.183 (3)	Ti1-Cl2	2.3153 (12)
Ti1-N4	2.203 (2)	N1-B1	1.567 (4)
Ti1-N6	2.218 (2)	N3-B1	1.535 (4)
Ti1-N7	2.152 (2)	N5-B1	1.534 (4)
Ti1-Cl1	2.3523 (13)		
N2-Ti1-N4	85.37 (10)	N6-Ti1-N7	93.86 (9)
N2-Ti1-N6	81.59 (9)	N6-Ti1-Cl1	92.37 (7)
N2-Ti1-N7	90.50 (10)	N6-Ti1-Cl2	168.05 (6)
N2-Ti1-Cl1	173.14 (7)	N7-Ti1-Cl1	86.63 (8)
N2-Ti1-Cl2	86.45 (7)	N7-Ti1-Cl2	86.00 (7)
N4-Ti1-N6	85.62 (8)	Cl1-Ti1-Cl2	99.55 (4)
N4-Ti1-N7	175.87 (9)	N5-B1-N3	109.1 (2)
N4-Ti1-Cl1	97.48 (8)	N5-B1-N1	107.9 (2)
N4-Ti1-Cl2	93.66 (7)	N3-B1-N1	108.7 (2)

Atom H56 attached to B1 was located in a difference Fourier synthesis, after which it was refined freely. All other H atoms were positioned geometrically (C–H = 0.95 and 0.98 Å) and refined as riding, with $U_{\rm iso}({\rm H}) = 1.2$ or $1.5U_{\rm eq}({\rm parent atom})$.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT-Plus* (Bruker, 2002); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXTL* (Bruker, 2002); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported by the US Department of Energy (DE-FG02–00ER15036).

References

Bruker (2002). SMART (Version 5.628), SAINT-Plus (Version 6.02), SADABS (Version 2.03) and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.

Gil, M. P. & Casagrande, O. L. Jr (2004). J. Organomet. Chem. 689, 286–292. Gil, M. P., dos Santos, J. H. Z. & Casagrande, O. L. Jr (2001). Macromol. Chem.

- Phys. 202, 319–324.
 Gil, M. P., dos Santos, J. H. Z. & Casagrande, O. L. Jr (2004). J. Mol. Catal. A, 209, 163–169.
- Hughes, D. L., Leigh, G. J. & Walker, D. G. (1988). J. Chem. Soc. Dalton Trans. pp. 1153–1157.
- Lee, H. & Jordan, R. F. (2005). J. Am. Chem. Soc. 127, 9384-9385.
- Michiue, K. & Jordan, R. F. (2003). Macromolecules, 36, 9707-9709.
- Michiue, K. & Jordan, R. F. (2004). Organometallics, 23, 460-470.
- Murtuza, S., Casagrande, O. L. & Jordan, R. F. (2002). Organometallics, 21, 1882–1890.
- Pires, G. P., Gil, M. P., Rohrman, J. A., Stedile, F. C., Casagrande, O. L. Jr, dos Santos, J. H. Z. & Sano, T. (2006). J. Appl. Polym. Sci. 99, 2002–2009.